<u>Title</u>: Normative Lower-to-Upper Limb Tissue Dielectric Constant Ratios with Possible Application to Lower Extremity Edema

<u>Authors</u>: Maria Labra, OMS II, Glenda Abreu, OMS III, Harvey N. Mayrovitz, Ph.D. Nova Southeastern University, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University College of Medical Sciences

Background: Lower extremity edema occurs in many conditions including congestive heart failure, lymphedema, diabetes-related, kidney and liver disease, chronic venous insufficiency with venous hypertension. Clinical edema assessment methods are often subjective and variable. Our goals were to introduce a simple noninvasive measurement procedure potentially useful to characterize lower extremity edema by providing normative values from which edema thresholds might emerge. A non-invasive way to assess local skin water is by measuring skin tissue dielectric constant (TDC) since TDC depends strongly on skin-to-fat water content.

Objective: Our research goal was to determine and present such TDC normative ratios, initially for healthy young persons, as a first step in developing normative reference values and ranges to potentially aid in the early detection and tracking of lower extremity edema.

Methods: TDC measurements were made using a hand-held, commercially available device that records TDC values by touching skin for 5-7 seconds. For reference, the value for pure water at 32° C is 76. Measurements were done in triplicate, bilaterally at three lower limb sites and at two upper limb sites. Measurements were done in 22 women (24.9 ± 2.5 years) and 22 men (25.3 ± 1.8 years) after each signed an IRB approved consent form. Absolute TDC values for each site and gender were determined and lower limb / upper limb ratios (LL/UL) were determined for each site. All values are mean ± SD.

Results: TDC values did not significantly differ between dominant and non-dominant sides at any site for either gender. However, TDC values were greater for males at forearm (33.3 \pm 3.2 vs. 27.5 \pm 3.0, p<0.001) and foot dorsum (32.3 \pm 4.9 vs. 28.1 \pm 2.8, p< 0.001). There were no gender related differences at the other measured sites with the largest TDC value measured at the hand (42.1 \pm 7.9). The LL/UL ratios were normally distributed and varied depending on sites included in the ratio. However, the LL/UL ratio that had the least variance among subjects and also did not differ between genders, was the foot/forearm ratio. For measurements in 44 subjects (88 legs) the foot/forearm ratio was 1.003 \pm 0.146 with a median value of 1.004.

Conclusion: Our current findings suggest that measurement of the foot/forearm and let/forearm TDC ratios provide useful assessment parameters for detecting early lower extremity edema when that ratio exceeds a specified threshold greater than determined in the present healthy group. At this time, the optimum threshold value is somewhat arbitrary but a reasonable selection would be a value that is greater than the currently determined mean value plus 2SD. This would define a threshold for edema as a foot/forearm ratio greater than 1.300 and a similar value for the leg/forearm ratio threshold.